
IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 1

Performance Assessment of RSA, ElGamal and

Proposed DHOTP for File Security in Pervasive

Computing Environment

Dr. Mohammed Najm Abdullah
1
, Atheer Marouf Al-Chalabi

2

Computer Engineering Dept., University of Technology, Baghdad, Iraq
1

Research Scholar, Informatics Institute for Postgraduate Studies, UITC, Baghdad, Iraq
2

Abstract: Pervasive computing is a new technology which will be integrated into all the objects that interact with

peoples, to enhancement and make people's routine lives easier through making the process of those objects interactive

automatically to anything and everything in every place and at any moment of time in their environment without human

intervention as possible. Security is very important element in pervasive computing environment to protect data that is

transferred between devices connected with each other via (Wi-Fi or Bluetooth …etc.). This papers proposed a new

secure method called HDOTP which is determine on Diffie-Hellman key exchanging to exchange and establish secret

key and use this secure key as an initial key in One-Time pad algorithm with new algorithm for steam key generator to

generate a random key and compared it with RSA and ElGamal according to parameter performance (runtime, memory

usage, avalanche Effect, throughput) and concluded that HDOTP is more efficient than RSA and ElGamal.

Keywords: Pervasive computing environment, cryptography, RSA, ElGamal, Diffie-Hellman Key Exchange, One

Time Pad, key stream.

I. INTRODUCTION

The increase in the development of technical devices that

entered in all details of people's daily lives (mobile

devices, wireless networks, sensors and communications

technology) carrying the information and

telecommunications revolution to new dimension in the

field of telecommunications named pervasive computing.

Pervasive computing, the new generation of personal

computing that operate in every place and at any moment

of time [1].

The term of Pervasive Computing Environment refer to

the combination of mobile devices and wireless

networking technologies to detect and access services to

nearby devices [2].

This environment is susceptible to several challenges, one

of these challenges is the security problem, especially the

problem of data protection when the data transferred

between devices connected with each other via (Wi-Fi or

Bluetooth …etc.).

Recently data security has become an important element

for many applications that are related to networks,

communications and embedded systems to hold out

attacks through providing the applications in strong

encryption algorithms with a key owned by authorized

parties to protect the important data when it is transferred

from the sender to the recipient [3, 4].

Fig.1 displays the general flow of usual used encryption

algorithms.

Fig. 1. Encryption/decryption general flow

Literatures have depicted the previous work done in the

topics of data encryption which is implemented the

security algorithm. Goshwe [5] presented a successfully

implementation of data encryption and decryption using

RSA algorithm in a network environment. Okeyinka [6]

implement the algorithm of RSA and ElGamal using c#

language and environment. He concluded that the RSA is

better than the ElGamal on the total assessment except in

the rate of data decryption. Some other Literatures

presented the difference between the encryption

algorithms to determine the most efficient algorithm in

performance. In [6-8] they implement and compare

between RSA ElGamal algorithm using factor analysis,

they conclude that RSA is better than ElGamal in time

consumption but ElGamal is more secure RSA algorithm

in complex cipher-text. In [9-11] they compare between

asymmetric, symmetric algorithm. They have concluded

that the ratio of encryption of each algorithm is considered

high, and that the technique of asymmetric key cipher is

more secure than the technique of symmetric key cipher.

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 2

This paper is propose new method by using Diffie-

Hellman Key Exchanging algorithm and One-Time pad

algorithm with new algorithm to generate key stream and

compare the propose algorithm with RSA and ElGamal

using performance parameter.

II. CRYPTOGRAPHIC TECHNIQUES

There are two basic techniques for encrypting information:

asymmetric encryption (also called public key encryption)

and symmetric encryption (also called secret key

encryption). Asymmetric encryption uses two different

keys, but they linked in some mathematical way together

so, it is possible to use one of them as a public key to

encrypt the data and the other is used as private key to

decrypt the encryption like RSA algorithm. Symmetric

encryption uses the same key to encrypt and decrypt data

like AES and DES algorithm [12]. It is divided into two

types: block cipher and stream cipher. Block cipher

encrypt all bits in block at the same time using the same

key (i.e. encrypt any bit depends on the rest of the bits in

the same block). Stream cipher encrypt every bit in block

independently using key stream. Vernam cipher (invented

by Gilbert Vernam in 1917) is symmetric stream

encryption which is used in encryption the exclusive or

function between plaintext and key stream [13]. Key

stream is classified into two type: synchronous key (key

stream depend on only the key to generate new bit) and

asynchronous key (key stream depend on cipher-text too

as well as the key) [14]. Key management is an element of

public key cryptography, that responsible to share (one or

many) public key in order to use it in encryption or

decryption process depend on public key encryption

technique [15].

III. DIFFIE–HELLMAN KEY EXCHANGE

In 1976 Whitfield Diffie and Martin Hellman have written

Diffie Hellman algorithm.

Fig 2. The Diffie-Hellman key exchange UML Activity

Diagram between ubiquity_1 and ubiquity_2

It solved the challenges that facing the private key using

the management of public keys, so it was taken advantage

of public keys to generate a private key for the two devices

which are not connected with each other previously as

shown in Fig.2, and Algorithm 1 and Algorithm 2

illustrate the exchanging process between two ubiquities

[16].

IV. ONE TIME PAD ENCRYPTION

One-Time pad is a cryptography algorithm proposed by

Joseph Mauborgne to improved security of Vernam cipher

when uses random and independent (non-repeated) key

stream as shown in Fig. 3, and Algorithm 3 and Algorithm

4 illustrate the encryption/decryption process between two

ubiquities using the same initial key stream [17].

Fig. 3. Encryption/Decryption process in One-time Pad

algorithm UML Activity Diagram between ubiquity_1 and

ubiquity_2

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 3

V. RSA

The RSA is an asymmetric encryption, it developed by

Ronald Rivest, Adi Shamir, and Leonard Adleman in

1977. It is used tow type of keys, public key that send to

other side to encryption process and private key to

decryption which is kept secret as shown in Fig. 4, and

Algorithm 5 illustrate the generation key , Algorithm 6

and Algorithm 7 illustrate the encryption/decryption

process using RSA algorithm between two ubiquities [18].

Fig. 4. RSA encryption/decryption UML Activity Diagram

between ubiquity_1 and ubiquity_2

VI. ELGAMAL

The ElGamal encryption is public key cryptographic

algorithms submitted by Taher Elgamal as an extension of

the Diffie-Hellman Key Exchange in 1985. Its security

depend on the intractability of the (discrete logarithm and

Diffie-Hellman) [14]. Fig.5 describe the ElGamal

mechanism for exchanging key and encryption/decryption

process, , and Algorithm 8 illustrate the generation key ,

Algorithm 9 and Algorithm 10 illustrate the

encryption/decryption process using RSA algorithm

between two ubiquities.

Fig. 5. ElGamal algorithm encryption/decryption UML

Activity Diagram between ubiquity_1 and ubiquity_2

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 4

VII. PROPOSE MODEL

The subject of this paper depends on the construction of

the integrated security system in pervasive computing

environment by establishing a connection between two

parties and exchanging a key between them, and uses the

product key (secret key) to encrypt a file that will transmit

over an environment that might be not secure using solid

algorithm. Diffie-Hellman key exchanging algorithm

being used in our contribution to exchange and establish

secret key and use this secure key as an initial key in One-

Time pad algorithm. And also propose a generation key

method to generate a random key depends on the extracted

value from the plain-text and the key which is not give any

indication on the plain-text and the key as shown in Fig. 6.

Fig.6 HDOTP encryption/decryption UML Activity

Diagram between ubiquity _1 and ubiquity _2

The propose method process called HDOTP (Diffie-

Hellman and One-Time Pad). It begins when the

Ubiquity_1 and Ubiquty_2 exchanging the key between

them and use the size of the key to divided the plain-text

into blocks (n).

n =
Plaintext size

key Size

(1)

The plain-text block encrypt/decrypt with its specified key

using exclusive OR function as it illustrated in Algorithm

11 and Algorithm 12. The new key is generated depend on

many concepts:

Shift value (SV): is the value of shifting bit.

SV = Random 15 + 5

(2)

C1b: its mean (count 1's bit).

Extract Value (EV): is the value that is calculated from the

key and plain-text as it's shown in equation (5). The key

extract value (KEV) that's refer to the amount of 1's in the

key and it's calculated as equation (3). The plain-text extra

value (PEV) refer to the amount of 1's in each the current

and previous plain-text block (not that the second key is

depend on the extract value from the block[0] and block[n-1],

where n refer to the total blocks) as it's shown in equation

(4).

KEV = C1bkey
2 mod 2SV

(3)

PEV = C1bi × C1b(i−1) mod 2SV

(4)

EV = PEV  KEV

(5)

Temp Cipher Value (TCV): is a value that controlled on

the continuation to generate different bit even if the PEV,

KEV, and the out bit from the key is still the same in all

encryption process, the initial TCV = 1.

TCV = (TCV  Keylastbit) EV

(6)

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 5

Fig. 7 and Algorithm 13 illustrate the key generation

process in DHOTP.

Fig. 7. Logic scheme to explain the new key generation

VIII. ANALYSIS AND TESTS

A. Key Bit Random Tests:

The first stage in this work is to generate a sequence keys

from the private key. This sequence must be a random. So,

to measure the generator quality that is propose to be a

random bit generator by detect if the generator may have a

kinds of weaknesses. If a set of bit sequence is S = s0, s1,

..., sn-1. The general type of tests are [13]:

 Monobit test (Frequency test): This test purpose is to

determine if 0's and 1's number in S are nearly equivalent

to the same according to the following equation:

x =
(n1 − n0)2

n

 Where: n0  0's count.

 n1  1's count.

 n  total bits count.

 Two-bit test (Serial test): This test purpose is to

determine if the occurrences number of 00, 01, 10, and 11

are nearly equivalent to the same according to the

following equation:

 x =
4

n − 1
 × nij

2

1

j=0

1

i=0

 −
2

n
× n0+

2 n1
2 + 1

 Poker test: This test purpose is to determine if the

sequences of length m (where m is a positive number),

each appear nearly equivalent to the same number of times

in S according to the following equation:

x =
2m

k
 × ni

2

2m

i=1

 − k

B. Algorithm Analysis Performance:

The second stage in this work is to compare the proposal

work than RSA and ElGamal algorithm with three key size

(512, 1024 and 2048) to determine the efficient algorithm

with best key size to use it in pervasive computing by

using algorithm performance parameter which is:

 Runtime: is the time that the program need it

dynamically after the program successfully compile to

execute a code statements [19].

 Memory usage: is the amount of memory which every

value precisely required when you run a program [20].

 Avalanche Effect: is the characteristic which is

important for encryption algorithm. Its concept is when

any bit change in attribute of metadata will change the

outcome [21].

 Avalanche Effect =
Number of Bits Change

Total Bits

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 6

 Throughput: is a set of items which is processed in a unit

per time [22].

Throughput =
Total Bits

Total Time

IX. RESULTS

All the algorithms which mentioned in the above was

implement and test using android studio v1.5 with two

mobile have the same specification as shown in Table 1.

We test the random key stream with three type of keys

(512, 1024 and 2048) using Key Bit Random. The result

shown in Table 2 which is the average of 50 time

generated different key to encrypt/decrypt a file size

10KB. In each time take the average of all keys that is

generated along the blocks of file to encryption/decryption

process as shown in Fig. (8, 9, 10, 11, 12, 13, 14, 15 and

16).

TABLE 1 MOBILE SPECIFICATION USE IN TEST

AND ANALYSIS THE ALGORITHMS

Model Samsung I9300I Galaxy S3 Neo

CPU Quad-core 1.4 GHz Cortex-A7

OS Android v4.3

Total RAM 1.5 GB

Internal Storage 16 GB

TABLE 2 KEY BIT RANDOM TESTS WITH

DIFFERENT THREE KEYS

key size test type
average

statistic value
Threshold

512

Frequency 0.2971 3.8415

serial 1.0852 5.9915

poker 1.9137 7.8147

1024

Frequency 0.364 3.8415

serial 1.0795 5.9915

poker 1.936 7.8147

2048

Frequency 0.622 3.8415

serial 1.3831 5.9915

poker 1.856 7.8147

Fig. 8. Frequncy test for 50 keys (512bit) generated in

HDOTP

Fig. 9. Serial test for 50 keys (512bit) generated in

HDOTP

Fig. 10. Poker test for 50 keys (512bit) generated in

HDOTP

Fig. 11. Frequncy test for 50 keys (1024bit) generated in

HDOTP

Fig. 12. Serial test for 50 keys (1024bit) generated in

HDOTP

Fig. 8. Frequncy test for 50 keys (512bit) generated in HDOTP

Fig. 9. Serial test for 50 keys (512bit) generated in HDOTP

Fig. 10. Poker test for 50 keys (512bit) generated in HDOTP

Fig. 11. Frequncy test for 50 keys (1024bit) generated in HDOTP

Fig. 12. Serial test for 50 keys (1024bit) generated in HDOTP

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 7

Fig. 13. Poker test for 50 keys (1024bit) generated in

HDOTP

Fig. 14. Frequncy test for 50 keys (2048bit) generated in

HDOTP

Fig. 15. Serial test for 50 keys (2048bit) generated in

HDOTP

Fig. 16. Poker test for 50 keys (2048bit) generated in

HDOTP

The comparison between DHOTP, RSA and AlGamal

with three key sizes (512, 1024 and 2048) bit and three

different sizes of file (100, 500 and 1000) KB to

encryption and decryption using: runtime factor is shown

in Table 3 and Fig. 17, memory usage factor shown in

Table 4 and Fig. 18, avalanche effect factor is shown in

Table (5, 6 and 7) and Fig. (19, 20 and 21), and throughput

factor is shown in Table 8 and Fig. 22.

TABLE 3 ALGORITHM RUNTIME (MILLISECOND)

Fig. 13. Poker test for 50 keys (1024bit) generated in HDOTP

Fig. 14. Frequncy test for 50 keys (2048bit) generated in HDOTP

Fig. 15. Serial test for 50 keys (2048bit) generated in HDOTP

Fig. 16. Poker test for 50 keys (2048bit) generated in HDOTP

 File size
Key length (bit)

512 1024 2048

R
S

A

E
n

cr
y

p
ti

o
n
 1
0

0

7
2

8

7
9

1

1
3

1
5

5
0

0

3
1

2
4

3
9

0
6

6
6

3
1

1
0

0
0

6
1

1
7

7
8

9
9

1
3

3
2
5

D
ec

ry
p

ti
o

n
 1

0
0

4
0

3
8

1
1

7
2
2

4
2

6
4
1

5
0

0

1
8

8
5
5

5
8

1
5
8

2
4

6
7
5

2

1
0

0
0

3
7

4
2
8

1
1

7
1
5

2

4
2

7
6
6

9

D
H

O
T

P
 E

n
cr

y
p

ti
o
n
 1
0

0

2
0

0
4

1
0

7
1

6
4

7

5
0

0

9
5

9
4

5
3

9
8

3
1

6
8

1
0

0
0

1
9

1
7
6

1
0

7
7
3

6
3

0
2

D
ec

ry
p

ti
o

n
 1
0

0

2
0

0
0

1
0

6
3

6
2

6

5
0

0

9
5

5
4

5
2

9
7

3
0

6
7

1
0

0
0

1
8

9
6
1

1
0

6
8
9

6
1

4
5

E
lG

am
al

 E
n

cr
y

p
ti

o
n
 1
0

0

1
4

1
6

1
8

8
9

2
8

1
6

5
0

0

6
6

0
6

8
9

2
8

1
3

1
2
5

1
0

0
0

1
4

2
9
0

1
9

6
1
3

3
0

3
4
3

D
ec

ry
p

ti
o

n
 1
0

0

2
2

0
6

3
1

0
4

4
8

9
3

5
0

0

1
0

7
3
6

1
4

6
7
5

2
4

3
3
9

1
0

0
0

2
1

9
4
0

2
9

5
5
4

4
8

8
2
7

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 8

Fig. 17. Algorithm runtime

TABLE 4 ALGORITHM MEMORY USAGE (MB)

File size

Key length (bit)

512 1024 2048

R
S

A

E
n

cr
y

p
ti

o
n
 1

0
0

1
.8

0
.8

0
.4

5
0

0

9
.1

4
.1

1
.9

1
0

0
0

1
8

.2

8
.2

5

3
.8

6

D
ec

ry
p

ti
o

n
 1

0
0

1
.8

0
.8

0
.4

5
0

0

8
.7

3
.8

1
.8

1
0

0
0

1
7

.5

7
.5

6

3
.5

1

D
H

O
T

P

E
n

cr
y

p
ti

o
n

1
0

0

1
7

.3

1
0

.1

6
.1

5

5
0

0

8
6

.9

5
0

3
0

.9

1
0

0
0

1
7

3
.7

9
9

.8
8

6
1

.6
7

D
ec

ry
p

ti
o

n

1
0

0

1
7

.3

1
0

.1

6
.0

8

5
0

0

8
6

.7

4
9

.9

3
0

.9

1
0

0
0

1
7

3
.4

9
9

.7
1

6
1

.5
8

E
lG

am
al

E
n

cr
y

p
ti

o
n
 1

0
0

5
.1

4
.5

2
.9

5
0

0

3
7

2
1

.8

1
2

1
0

0
0

7
3

.4

3
2

.5

1
8

.1

D
ec

ry
p

ti
o

n

1
0

0

1
8

.5

1
8

.7

2
0

.3

5
0

0

8
9

.3
6

8
9

.5
8

1
0

4
.7

1
0

0
0

2
0

0
.4

2
0

5
.1

2
2

1
.2

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 9

Fig. 18. Algorithm memory usage

TABLE 5 Algorithm avalanche effect key 1 bit change

(%)

File

Size

Key length (bit)

512 1024 2048

R
S

A

1
0

0

4
9

.9
5

4
9

.9
7

5
0

.0
0

5
0

0

4
9

.9
6

4
9

.9
9

5
0

.0
0

1
0

0
0

4
9

.9
8

5
0

.0
0

5
0

.0
0

D
H

O
T

P
 1

0
0

4
9

.9
8

4
9

.9
9

5
0

.0
0

5
0

0

5
0

.0
0

5
0

.0
3

5
0

.0
3

1
0

0
0

5
0

.0
2

5
0

.0
3

5
0

.0
4

E
lG

am
al

1
0

0

4
9

.9
6

4
9

.9
8

4
9

.9
7

5
0

0

4
9

.9
7

4
9

.9
9

4
9

.9
9

1
0

0
0

5
0

.0
0

5
0

.0
0

5
0

.0
0

Fig. 19. Algorithm avalanche effect for key 1bit change

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 10

TABLE 6 Algorithm avalanche effect key and text 1 bit

change (%)

File

Size

key Length (bit)

512 1024 2048

R
S

A

1
0

0

4
9

.9
5

4
9

.9
7

4
9

.9
7

5
0

0

4
9

.9
6

4
9

.9
9

5
0

.0
0

1
0

0
0

4
9

.9
8

5
0

.0
0

5
0

.0
0

D
H

X
O

R
 1

0
0

5
0

.0
1

5
0

.0
2

5
0

.0
2

5
0

0

5
0

.0
2

5
0

.0
3

5
0

.0
3

1
0

0
0

5
0

.0
5

5
0

.0
5

5
0

.0
5

E
lG

am
al

 1
0

0

4
9

.9
6

4
9

.9
8

4
9

.9
8

5
0

0

4
9

.9
8

4
9

.9
9

4
9

.9
9

1
0

0
0

5
0

.0
0

5
0

.0
0

5
0

.0
0

Fig. 20. Algorithm avalanche effect for key and text 1bit

change

TABLE 7 Algorithm avalanche effect text 1 bit change

(%)

File

Size

key Length (bit)

512 1024 2048

R
S

A

A
n

y
 p

la
ce

1
0

0

0
.0

2
5

0
.0

5
7

0
.1

1
9

5
0

0

0
.0

0
5

0
.0

1
1

0
.0

2
4

1
0

0
0

0
.0

0
3

0
.0

0
6

0
.0

1
2

D
H

X
O

R

1
st

 b
lo

ck

1
0

0

4
9

.9
4
1

4
9

.9
7
2

4
9

.9
8
1

5
0

0

4
9

.9
8
6

4
9

.9
8
9

4
9

.9
9
1

1
0

0
0

4
9

.9
9
0

4
9

.9
8
9

4
9

.9
8
6

M
id

-b
lo

ck

1
0

0

2
4

.9
8
0

2
5

.0
0
0

2
5

.1
0
8

5
0

0

2
4

.9
7
9

2
5

.0
0
1

2
5

.1
1
7

1
0

0
0

2
5

.0
1
6

2
5

.1
0
8

2
5

.1
2
3

P
ri

o
r

la
st

 b
lo

ck
 1
0

0

0
.0

3
2

0
.0

6
1

0
.1

2
6

5
0

0

0
.0

0
6

0
.0

1
3

0
.0

2
5

1
0

0
0

0
.0

0
3

0
.0

0
6

0
.0

1
2

E
lG

am
al

A
n

y
 p

la
ce

1
0

0

0
.0

2
6

0
.0

5
9

0
.1

2
0

5
0

0

0
.0

0
5

0
.0

1
1

0
.0

2
4

1
0

0
0

0
.0

0
3

0
.0

0
6

0
.0

1
2

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 11

Fig. 21. Algorithm avalanche effect for text 1bit change

TABLE 8 Algorithm throughput (bit per second)

 key Length (bit)

512 1024 2048

RSA Encryption 1251 1040 618

Decryption 213 70 18

DHXOR Encryption 421 761 1286

Decryption 423 770 1326

ElGamal Encryption 590 436 290

Decryption 375 273 168

Fig. 22. Algorithm throughput

X. CONCLUSION

In this paper, we propose new method which is called

HDOTP, and the conclusion is divided into three

considerations. The first one is about the random of key

generation, and all results accepted in the three tests:

frequncey test, serial test and poker test. The second

consideration is about the key size of HDPOTP, and all the

comparision performance test is shown that 2048 bit key is

better than the other key size (i.e. 1024 bit and 512 bit).

The last consideration is about the algorithm analysis

performance among HDOTP, RSA and Elgamal. The

runtime and the throughput factors show that HDOTP

using 2048 bit key size is better than RAS (with the same

key size around 68% in encryption and 99% in decryption)

IJARCCE
 ISSN (Online) 2278-1021
 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51201 12

and ElGamal (with the same key size is around 82% in

encryption and 89% in decryption). The avalanche effect

factor shows that HDOTP is better than RSA and ElGamal

algorihms in all situations: change just one bit from a key,

change one bit from a key and plain text, and change just

one bit from plain text. The memory usage factor shows

that HDOTP need more memory than the other algorithms.

From all the concluded points here above show that

HDOTP is the efficient method when its use in pervasive

computing environments, especially that all devices in

pervasive environment must have a huge memory size.

REFERENCES

[1] J. Burkhardt, T. Schaeck, H. Henn, S. Hepper, And K. Rindtorff,

Pervasive Computing: Technology And Architecture Of Mobile
Internet Applications: Addison-Wesley Longman Publishing Co.,

Inc., 2001.

[2] I. Mezgár And S. Grabner-Kräuter, "Privacy, Trust, And Business
Ethics For Mobile Business Social Networks," Handbook Of

Research On Business Ethics And Corporate Responsibilities, P.

390, 2015.
[3] K. Sireesha and S. M. Rao, "A Novel Approach Of Area Optimized

And Pipelined FPGA Implementation Of AES Encryption And

Decryption," Int. J. Sci. Res. Publ, Vol. 3, Pp. 1-5, 2013.
[4] R. Hosseinkhani And S. H. H. S. Javadi, "Using Image As Cipher

Key In AES," International Journal Of Computer Science Issues

(IJCSI), Vol. 9, 2012.

[5] N. Y. Goshwe, "Data Encryption And Decryption Using RSA

Algorithm In A Network Environment," International Journal Of

Computer Science And Network Security (IJCSNS), Vol. 13, P. 9,
2013.

[6] A. Okeyinka, "Computational Speeds Analysis Of RSA And

Elgamal Algorithms On Text Data," In Proceedings Of The World
Congress On Engineering And Computer Science, 2015.

[7] A. Shetty and K. Shravya Shetty, "A Review On Asymmetric

Cryptography–RSA And Elgamal Algorithm," International Journal
Of Innovative Research In Computer And Communication

Engineering, 2014.

[8] A. Sharma, J. Attri, A. Devi, And P. Sharma, "Implementation &
Analysis Of RSA And Elgamal Algorithm," Presented At The

National Conference On ‘Advances In Basic & Applied Sciences’,

2014.
[9] G. Singh, "A Study of Encryption Algorithms (RSA, DES, 3DES

and AES) For Information Security," International Journal of

Computer Applications, Vol. 67, 2013.

[10] R. Tripathi and S. Agrawal, "Comparative Study Of Symmetric

And Asymmetric Cryptography Techniques," International Journal
Of Advance Foundation And Research In Computer (IJAFRC),

Vol. 1, Pp. 68-76, 2014.

[11] A. Roy, "Brief Comparison of RSA and Diffie-Hellman (Public
Key) Algorithm," ACCENTS Transactions On Information

Security, Vol. Vol 1(1), 2016.

[12] J. A. Carlson, "METHOD FOR SECURE COMMUNICATION
USING ASYMMETRIC & SYMMETRIC ENCRYPTION OVER

INSECURE COMMUNICATIONS," Ed: US Patent 20, 150, 326,

547, 2015.
[13] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, Handbook

Of Applied Cryptography: CRC Press, 1996.

[14] C. Paar And J. Pelzl, Understanding Cryptography: A Textbook For
Students And Practitioners: Springer Berlin Heidelberg, 2009.

[15] G. Al-Aali, B. Boneau, And K. Landers, "Diffie-Hellman Key

Exchange," D. O. C. S. A. E. U. O. N. Dame, Ed., Ed. Notre Dame,
Indiana 46556-0309, 2000, Pp. 67-74.

[16] K. Palmgren, "Diffie-Hellman Key Exchange: A Non

mathematicians Explanation," ISSA J, 2006.
[17] P. ŠTIKA, "Unconditional Security in Classical Cryptography,"

Masarykova Univerzita, Fakulta Informatiky, 2010.

[18] R. Laboratories, RSA Laboratories’ Frequently Asked Questions

about Today’s Cryptography, Version 4.1: RSA Security Inc., 2000.

[19] I. Alsamadi, Advanced Automated Software Testing: Frameworks
For Refined Practice: Frameworks For Refined Practice. USA:

Information Science Reference, 2012.

[20] R. Sesgewick and K. Wayne, Algorithms, 4th Ed. USA: Pearson
Education, 2011.

[21] D. B. Endicott-Popovsky, Proceedings of the International

Conference on Cloud Security Management: ICCSM-2013. USA:
Academic Conferences and Publishing International Limited, 2013.

[22] P. Killelea, Web Performance Tuning: Speeding Up the Web, 2nd

Ed. USA: O'Reilly Media, Incorporated, 2002.

